Design and Implementation of Low-Power Turbo Encoder for DVB-RCS Software Radio

Sherif Welsen Shaker, Member, IEEE, Salwa Hussien Elramly, Senior Member, IEEE and Khaled Ali Shehata, Member, IEEE

Abstract — Turbo codes are employed in every robust wireless digital communications system. Those codes have been adopted for the satellite return channel in DVB-RCS (Return Channel via Satellite) standard. In Software Defined Radios (SDRs), Field Programmable Gate Array technology (FPGA) is considered a highly configurable option for implementing many sophisticated signal processing tasks. The implementation for such codes is complex and dissipate large amount of power. In this paper, a low-power, turbo encoder for DVB-RCS is described using a VHDL code. The proposed design is implemented on Xilinx Virtex-II Pro, XC2vpx30 FPGA chip. FPGA Advantage Pro package provided by Mentor Graphics is used for VHDL description and ISE 10.1 by Xilinx is used for synthesization.

Keywords — DVB, FPGA, Software Defined Radios, Turbo codes, VHDL.

I. INTRODUCTION

C DR is characterized by its flexibility so that modifying Or replacing software programs can completely change its functionality. SDRs can reduce the cost of manufacturing and testing, while providing a quick and easy way to upgrade the product and take the advantage of new signal processing techniques and new wireless phone applications [1], [2]. In the early 1990's Field Programmable Gate Arrays (FPGAs) have become a considerable option in digital communication hardware where they were often applied as configurable logic cells to support memory controller tasks, complex state machines and bus interfacing [3]. Revolutionary changes have been made on FPGA technology in recent years. Complex real-time signal processing functions can yet be realized due to high clock speeds and huge gate densities provided by FPGA recent generations, like in Vertix-6 LXT FPGAs by Xilinx, which are optimized for highperformance logic and DSP with low power serial connectivity [4]. Many sophisticated signal processing tasks are performed in SDR that can be implemented on FPGA, including advanced compression algorithms, channel estimation, power control, forward error control, synchronization, and protocol management... etc [3].

The Digital Video Broadcasting (DVB) Project was founded in 1993 by the European Telecommunications Standards Institute (ETSI) with the goal of standardizing digital television services. Its initial standard for satellite delivery of digital television, named DVB-S, used a concatenation of an outer (204,188) byte shortened Reed Solomon code and an inner constraint length 7, variable rate (r ranges from 1/2 to 7/8) convolutional code [5].

The same infrastructure used to deliver television via satellite can also be used to deliver Internet and data services to the subscriber. Internet over DVB-S is a natural competitor against cable modem and DSL technology, and its universal coverage allows even the most remote areas to be served. Because DVB-S only provides a downlink, an uplink is also needed to enable interactive applications such as web browsing. The uplink and downlink need not be symmetric, since many Internet services require a faster downlink.

One alternative for the uplink is to use a telephone modem, but this does not allow for always-on service, has modest data rates, and can be costly in remote areas. A more attractive alternative is for the subscriber equipment to transmit an uplink signal back to the satellite over the same antenna used for receiving the downlink signal. However, given the small antenna aperture and requirement for a low-cost, low-power amplifier, there is very little margin on the uplink. Therefore, strong FEC coding is desired. For this reason, the DVB Project has adopted turbo codes for the satellite return channel in its DVB-RCS (Return Channel via Satellite) standard [6].

At the same time that the DVB Project was developing turbo coding technology for the return channel, it was updating the downlink with modern coding technology. The latest standard, called DVB-S2, replaces the concatenated Reed-Solomon/convolutional coding approach of DVB-S with a concatenation of an outer BCH code and inner low density parity check (LDPC) code [7]. The result is a 30% increase in capacity over DVB-S.

II. DVB-RCS

The DVB-RCS turbo code was optimized for short frame sizes and high data rates. Twelve frame sizes are supported raging from 12 bytes to 216 bytes, including a 53 byte frame compatible with ATM and a 188 byte frame compatible with both MPEG-2 and the original DVB-S standard. The return link supports data rates from 144 kbps to 2 Mbps and is shared among terminals by using muti-frequency time-division multiple-access (MF-

Sherif Welsen Shaker is with the Nanoelectronics Integrated Systems Center, NISC, Nile University, Giza, Egypt (phone: +20106444379; e-mail: swshaker@nileuniversity.edu.eg).

Salwa Hussien Elramly, is with Faculty of Engineering, Ain-Shams University, Cairo, Egypt; (e-mail: sramlye@netscape.net).

Khaled Ali Shehata, is with Arab Academy for Engineering and Technology, Cairo, Egypt; (e-mail: k_shehata@aast.edu).

TDMA) and demand-assigned multiple-access (DAMA) techniques. Eight code rates are supported, ranging from r = 1/3 to r = 6/7.

Like the turbo codes used in other standards, a pair of constituent RSC encoders is used along with log-MAP or max-log-MAP decoding [8]. The decoder for each constituent code performs best if the encoder begins and ends in a known state, such as the all-zeros state. This can be accomplished by independently terminating the trellis of each encoder with a tail which forces the encoder back to the all-zeros state. However, for the small frame lengths supported by DVB-RCS, such a tail imposes a nonnegligible reduction in code rate and is therefore undesirable. As an alternative to terminating the trellis of the code, DVB-RCS uses circular recursive systematic convolutional (CRSC) encoding [9], which is based on the concept of *tailbiting* [10]. CRSC codes do not use tails, but rather are encoded in such a way that the ending state matches the starting state.

Most turbo codes use binary encoders defined over GF(2). However, to facilitate faster decoding in hardware, the DVB-RCS code uses *duobinary* constituent encoders defined over GF(4) [11]. During each clock cycle, the encoder takes in two data bits and outputs two parity bits so that, when the systematic bits are included, the code rate is r = 2/4. In order to avoid parallel transitions in the code trellis, the memory of the encoder must exceed the number of input bits, and so DVB-RCS uses constituent encoders with memory three (a constraint length of four).

There are several benefits in using duobinary encoders. First, the trellis contains half as many states as a binary code of identical constraint length (but the same number of edges) and therefore needs half as much memory and the decoding hardware can be clocked at half the rate as a binary code. Second, the duobinary code can be decoded with the suboptimal but efficient max-log-MAP algorithm at a cost of only about 0.1-0.2 dB relative to the optimal log-MAP algorithm. This is in contrast with binary codes, which lose about 0.3-0.4 dB when decoded with the max-log-MAP algorithm [12]. Additionally, duobinary codes are less impacted by the uncertainty of the starting and ending states when using tailbiting and perform better than their binary counterparts when punctured to higher rates.

III. DVB-RCS TURBO ENCODER

The block diagram of the Turbo encoder that is used by DVB-RCS is shown in **Fig. 1**, the basic building blocks of the encoder are as the following:

A. Recursive Systematic Convolutional Encoder

The CRSC constituent encoder used by DVB-RCS is shown in **Fig. 2**. The encoder is fed blocks of k message bits which are grouped into N = k/2 couples. The number of couples per block can be $N \in \{48, 64, 212, 220, 228, 424, 432, 440, 752, 848, 856, 864\}$. The number of bytes per block is N/4. In **Fig. 2**, A represents the first bit of the couple, and B represents the second bit. The two parity bits are denoted W and Y. For ease of exposition, subscripts are left off the figure, but below a single subscript is used to denote the time index $k \in \{0, ..., N-1\}$ and an optional second index is used on the parity bits W and Y to indicate which of the two constituent encoders produced them.

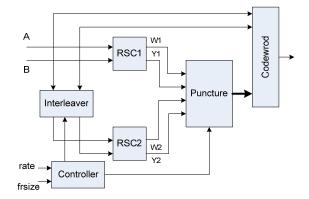


Fig. 1. Block diagram of DVB-RCS Turbo encoder.

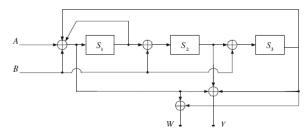


Fig. 2. Duobinary CRSC constituent encoder used by DVB-RCS.

Because of the tailbiting nature of the code, the block must be encoded twice by each constituent encoder. During the first pass at encoding, the encoder is initialized to the all-zeros state, $\mathbf{S}_0 = [0 \ 0 \ 0]$. After the block is encoded, the final state of the encoder \mathbf{S}_N is used to derive the circulation state. The circulation state \mathbf{S}_c is given by:

$$\mathbf{S}_{c} = (\mathbf{I} + \mathbf{G}^{N})^{-1} \mathbf{S}_{N}$$
(1)

where

$$G = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
(2)

In practice, the circulation state S_c can be found from S_N by using a lookup table [6]. Once the circulation state is found, the data is encoded again. This time, the encoder is set to start in state S_c and will be guaranteed to also end in state S_c .

B. Turbo Code Permutation (Interleaver)

The first encoder operates on the data in its natural order, yielding parity couples $\{W_{k,1}, Y_{k,1}\}$. The second encoder operates on the data after it has been interleaved. Interleaving is performed on two levels. First, interleaving is performed within the couples, and second, interleaving is performed between couples. Let $\{A'_k, B'_k\}$ denote the sequence after the first level of interleaving and $\{A''_k, B''_k\}$ denote the sequence after the sequence after the sequence after the sequence after the second level of

interleaving. In the first level of interleaving, every other couple is reversed in order, i.e. $(A'_k, B'_k) = (B_k, A_k)$ if k is even, otherwise $(A'_k, B'_k) = (A_k, B_k)$. In the second level of interleaving, couples are permuted in a pseudorandom fashion. The exact details of the second level permutation are as follows **[6]**:

Set the permutation parameters P0, P1, P2 and P3

For j = 0, ..., N-1

- if $j \mod 4 = 0$, then P = 0;
- if $j \mod 4 = 1$, then P = N/2 + P1;
- if $j \mod 4 = 2$, then P = P2;
- if $j \mod 4 = 3$, then P = N/2 + P3.

 $i = P0 \times j + P + 1 \mod N$

Table 1 provides the combinations of the default parameters to be used. The interleaving relations satisfy the odd/even rule (i.e. when j is even, i is odd and vice-versa) that enables the puncturing patterns to be identical for both encodings.

TABLE 1: TURBO CODE PERMUTATION PARAMETERS.

Frame size in couples	P 0	{ <i>P</i> 1, <i>P</i> 2, <i>P</i> 3}
N = 48 (12 bytes)	11	{24,0,24}
N = 64 (16 bytes)	7	{34,32,2}
N = 212 (53 bytes)	13	{106,108,2}
N = 220 (55 bytes)	23	{112,4,116}
N = 228 (57 bytes)	17	{116,72,188}
N = 424 (106 bytes)	11	{6,8,2}
N = 432 (108 bytes)	13	{0,4,8}
N = 440 (110 bytes)	13	{10,4,2}
N = 848 (212 bytes)	19	{2,16,6}
N = 856 (214 bytes)	19	{428,224,652}
N = 864 (216 bytes)	19	{2,16,6}
N = 752 (188 bytes)	19	{376,224,600}

After the two levels of interleaving, the second encoder (which is identical to the first) encodes the sequence $\{A''_k, B''_k\}$ to produce the sequence of parity couples $\{W_{k,2}, Y_{k,2}\}$. As with the first encoder, two passes of encoding must be performed, and the second encoder will have its own independent circulation state.

C. Rates and Puncturing block

To create a rate r = 1/3 turbo code, a codeword is formed by first transmitting all the un-interleaved data couples { A_k , B_k }, then transmitting { $Y_{k,l}$, $Y_{k,2}$ } and finally transmitting { $W_{k,l}$, $W_{k,2}$ }. The bits are transmitted using QPSK modulation, so there is a one-to-one correspondence between couples and QPSK symbols. Alternatively, the code word can be transmitted by exchanging the parity and systematic bits, i.e. { $Y_{k,l}$, $Y_{k,2}$ }, followed by { $W_{k,l}$, $W_{k,2}$ } and finally { A_k , B_k }.

Code rates higher than r = 1/3 are supported through the puncturing of parity bits. To achieve r = 2/5, both encoders maintain all the Y_k but delete odd-indexed W_k . For rate 1/2 and above, the encoders delete all W_k . For rate r = 1/2, all the Y_k bits are maintained, while for rate r = 2/3 only the even-indexed Y_k are maintained, and for rate r = 4/5 only every fourth Y_k is maintained. Rates r = 3/4 and 6/7 maintain every third and sixth Y_k respectively, but are

only exact rates if N is a multiple of three.

IV. RESULTS

A Matlab code is first driven to evaluate the performance of the DVB-RCS turbo coding. **Fig. 3** shows the influence of the block size on the BER curve vs. Eb/No using AWGN channel for blocks of N = {48, 64, 212, 220, 228, 424, 752, and 864} message couples, or correspondingly {12, 16, 53, 55, 57, 106, 188, and 216} bytes. In each case, the code rate is r = 1/3, and ten iterations of Max-Log-MAP decoding are performed. **Fig. 4** shows the influence of the code rate on the BER curve, results are shown for all seven code rates when the block size is N = 212 message couples, ten iterations of Max-Log-MAP decoding are performed. **Fig. 4** shows the influence of the code rate on the BER curve, results are shown for all seven code rates when the block size is N = 212 message couples, ten iterations of Max-Log-MAP decoding are performed.

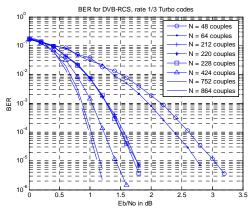


Fig. 3. Influence of block size on the BER performance of the DVB-RCS turbo code.

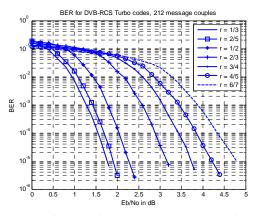


Fig. 4. Influence of code rate on the BER performance of the DVB-RCS turbo code.

The proposed DVB-RCS turbo encoder is then described at the register transfer level with VHDL code, which considers the low power design by trying to reduce the switching activity of the encoder circuits. This can be done by switching off the second interleaver while the data is applied to the first. More power reduction can be achieved in the puncture block with code rates higher than 2/5 that W parity register is switched of because its contents do not have to be transmitted with the coded sequence.

The simulation of the proposed encoder has been made using Modelsim SE 6.4b digital simulator to test the function of the different blocks for the implemented encoder. **Fig. 5** shows the simulation waveforms for the puncture block when the code rate r = 1/3 while **Fig. 6** shows the waveforms when r = 6/7.

Xilinx ISE 10.1 tools have been used for the synthesization process to map the design to the FPGA target technology. Xilinx Virtex-II Pro, xc2vpx30, with speed grade -6 has been selected; the design took about less than (3%) of the total chip resources, and the device utilization summary is shown in table 2. The results also showed that the Implemented design can work with frequency up to 233.8 MHz. The RTL schematic diagram for the puncture is shown in **Fig. 7**.

Fig. 5. Simulation of the puncture block, (rate 1/3)

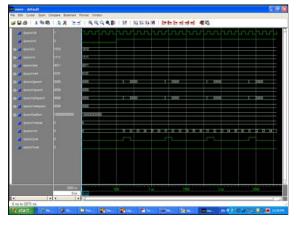


Fig. 6. Simulation of the puncture block, (rate 6/7)

Selected Device	xc2vp30-6fg676	
Number of slices	373 out of 13696	3%
Number of slices Flip Flops	436 out of 27392	2%
Number of 4 input LUTs	367 out of 27392	2%

TABLE 2: DEVICE UTILIZATION SUMMARY.

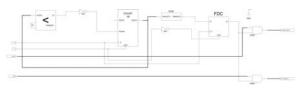


Fig. 7. RTL schematic of the puncture block

V. CONCLUSION

Features like higher flexibility, re-configurability and shorter time-to-market give the FPGA new opportunities for the effective insertion in SDR conditioning chain. In this paper, a design of low-power, turbo encoder for DVB-RCS has been proposed. The design benefits the concept of reducing the switching activity approach by the mean of register toggling for power reduction. The design has been described by VHDL using FPGA Advantage Pro by Mentor Graphics, simulated using Modelsim SE 6.4b, and then targeted on Xilinx Virtex-II Pro, XC2vp30 FPGA chip using ISE design suit 10.1 by Xilinx. The design took about 3% of the total chip logic elements. The maximum operating frequency is 233 MHz.

REFERENCES

- [1] Joseph Mitola III, "Software Radios," *IEEE Communications Magazine*, volume: 33 no. 5, pp.24-25, May 1995.
- [2] J. Kumagai, "Winner: Radio Revolutionaries," *IEEE Spectrum Magazine*, January 2007.
- [3] M. Cummings and S. Huruyama, "FPGA in the Software Radio," *IEEE Communication Magazine*, volume: 37, no. 2, pp. 108-112, February 1999.
- [4] Xilinx Inc., Virtex-6 SXT for DSP and memory-intensive applications with low-power serial connectivity, http://www.xilinx.com/products/v6s6.htm. Last visited: April. 2009.
- [5] European Telecommunications Standards Institute. "Digital broadcasting system for television, sound, and data services." *ETS* 200 421, 1994.
- [6] European Telecommunications Standards Institute. "Digital video broadcasting (DVB); interaction channel for satellite distribution systems;" *ETSI EN 301, 790 V1.5.1 (2009-05)*, 2009.
- [7] European Telecommunications Standards Institute. 'Digital video broadcasting (DVB) second generation framing structure, channel coding and modulation systems for broadcasting, interactive services, news gathering and other broadband satellite applications." DRAFT EN 302 307 DVBS2-74r15, 2003.
- [8] P. Robertson, P. Hoeher, and E. Villebrun. "Optimal and suboptimal maximum a posteriori algorithms suitable for turbo decoding." *European Trans. On Telecommun.*, 8(2):119–125, Mar./Apr. 1997.
- [9] C. Berrou, C. Douillard, and M. Jezequel. "Multiple parallel concatenation of circular recursive convolutional (CRSC) codes." *Annals of Telecommunication*, 54(3-4):166–172, Mar.-Apr. 1999.
- [10] H. H. Ma and J. K. Wolf. "On tail biting convolutional codes." *IEEE Trans. Commun.*, 34:104–111, May 1986.
- [11] C. Berrou and M. Jezequel. "Non binary convolutional codes for turbo coding." *IEE Electronics Letters*, 35(1):39–40, Jan. 1999.
- [12] M. C. Valenti and J. Sun. "The UMTS turbo code and an efficient decoder implementation suitable for software defined radios." *Int. J. Wireless Info. Networks*, 8:203–216, Oct. 2001.